skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Oh, Younghoon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Development of effective strategies for the internalization of nanoparticles is essential in many applications, such as drug delivery. Most, if not all, previous studies are based on equilibrium considerations. In this work, inspired by the recent development of a pro-drug delivery strategy based on reversible esterification, we consider a non-equilibrium transport mechanism for nanoparticles of a 6 nm diameter across the lipid membrane. We divide the transport process into insertion and ejection steps, which are studied with coarse-grained models using free energy and reactive Monte Carlo simulations, respectively. The simulations show that the non-equilibrium transport efficiency is relatively insensitive to the fraction of reactive surface ligands once a modest threshold is surpassed, while the distribution pattern of different (hydrophilic, reactive and permanent hydrophobic) ligands on the nanoparticle surface has a notable impact on both the insertion and ejection steps. Our study thus supports a novel avenue for designing nanoparticles that are able to be efficiently internalized and provides a set of relevant guidelines for surface functionalization. 
    more » « less